DataLoader
[부스트캠프][WK03 / Day12] PyTorch 구조 학습하기
1. 강의 내용 AutoGrad & Optimizer (최성철 교수님) 1) torch.nn.Module 딥러닝을 구성하는 Layer의 base class Input, Output, Forward, Backward(weights를 AutoGrad) 정의 학습의 대상이 되는 parameter(tensor) 정의 2) nn.Parameter Tensor 객체의 상속 객체 nn.Module 내에 attribute가 될 떄는 required_grad=True로 지정되어 학습 대상이 되는 Tensor 대부분의 layer에는 weights 값들이 지정되어 있기 때문에 우리가 직접 지정할 일은 잘 없음 # y = xw+b, in_features * out_features 만큼의 parameter(weights) 값들..